Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Drug Evaluation Research ; 45(5):842-852, 2022.
Article in Chinese | EMBASE | ID: covidwho-20244430

ABSTRACT

Objective To explore the potential common mechanism and active ingredients of Reduning Injection against SARS, MERS and COVID-19 through network pharmacology and molecular docking technology. Methods The TCMSP database was used to retrieve the chemical components and targets of Artemisiae Annuae Herba, Lonicerae Japonicae Flos and Gardeniae Fructus in Reduning Injection. The gene corresponding to the target was searched by UniProt database, and Cytoscape 3.8.2 was used to build a medicinal material-compound-target (gene) network. Three coronavirus-related targets were collected in the Gene Cards database with the key words of "SARS""MERS" and "COVID-19", and common target of three coronavirus infection diseases were screened out through Venny 2.1.0 database. The common targets of SARS, MERS and COVID-19 were intersected with the targets of Reduning Injection, and the common targets were selected as research targets. Protein-protein interaction (PPI) network map were constructed by Cytoscape3.8.2 software after importing the common targets into the STRING database to obtain data. R language was used to carry out GO biological function enrichment analysis and KEGG signaling pathway enrichment analysis, histograms and bubble charts were drew, and component-target-pathway network diagrams was constructed. The key compounds in the component-target-pathway network were selected for molecular docking with important target proteins, novel coronavirus (SARS-CoV-2) 3CL hydrolase, and angiotensin-converting enzyme II (ACE2). Results 31 active compounds and 207 corresponding targets were obtained from Reduning Injection. 2 453 SARS-related targets, 805 MERS-related targets, 2 571 COVID-19-related targets, and 786 targets for the three diseases. 11 common targets with Reduning Injection: HSPA5, CRP, MAPK1, HMOX1, TGFB1, HSP90AA1, TP53, DPP4, CXCL10, PLAT, PRKACA. GO function enrichment analysis revealed 995 biological processes (BP), 71 molecular functions (MF), and 31 cellular components (CC). KEGG pathway enrichment analysis screened 99 signal pathways (P < 0.05), mainly related to prostate cancer, fluid shear stress and atherosclerosis, hepatocellular carcinoma, proteoglycans in cancer, lipid and atherosclerosis, human T-cell leukemia virus 1 infection, MAPK signaling pathway, etc. The molecular docking results showed that the three core active flavonoids of quercetin, luteolin, and kaempferol in Reduning Injection had good affinity with key targets MAPK1, PRKACA, and HSP90AA1, and the combination of the three active compounds with SARS-CoV-2 3CL hydrolase and ACE2 was less than the recommended chemical drugs. Conclusion Reduning Injection has potential common effects on the three diseases of SARS, MERS and COVID-19. This effect may be related to those active compounds such as quercetin, luteolin, and kaempferol acting on targets such as MAPK1, PRKACA, HSP90AA1 to regulate multiple signal pathways and exert anti-virus, suppression of inflammatory storm, and regulation of immune function.Copyright © 2022 Drug Evaluation Research. All rights reserved.

2.
Drug Evaluation Research ; 45(1):37-47, 2022.
Article in Chinese | EMBASE | ID: covidwho-20238671

ABSTRACT

Objective Based on text mining technology and biomedical database, data mining and analysis of coronavirus disease 2019 (COVID-19) were carried out, and COVID-19 and its main symptoms related to fever, cough and respiratory disorders were explored. Methods The common targets of COVID-19 and its main symptoms cough, fever and respiratory disorder were obtained by GenCLiP 3 website, Gene ontology in metascape database (GO) and pathway enrichment analysis, then STRING database and Cytoscape software were used to construct the protein interaction network of common targets, the core genes were screened and obtained. DGIdb database and Symmap database were used to predict the therapeutic drugs of traditional Chinese and Western medicine for the core genes. Results A total of 28 gene targets of COVID-19 and its main symptoms were obtained, including 16 core genes such as IL2, IL1B and CCL2. Through the screening of DGIdb database, 28 chemicals interacting with 16 key targets were obtained, including thalidomide, leflunomide and cyclosporine et al. And 70 kinds of Chinese meteria medica including Polygonum cuspidatum, Astragalus membranaceus and aloe. Conclusion The pathological mechanism of COVID-19 and its main symptoms may be related to 28 common genes such as CD4, KNG1 and VEGFA, which may participate in the pathological process of COVID-19 by mediating TNF, IL-17 and other signal pathways. Potentially effective drugs may play a role in the treatment of COVID-19 through action related target pathway.Copyright © 2022 Tianjin Press of Chinese Herbal Medicines. All Rights Reserved.

3.
Chinese Pharmacological Bulletin ; 36(9):1309-1316, 2020.
Article in Chinese | EMBASE | ID: covidwho-2323869

ABSTRACT

Aim To explore the active compound of Maxingganshi decoction in treatment of novel coronavirus pneumonia(COVID-19). Methods With the help of TCMSP database, the chemical components and action targets of ephedra, almond, licorice, and gypsum in Maxingganshi decoction were searched, and then a C-T network, protein interaction analysis, GO functional enrichment analysis, and KEGG pathway enrichment were constructed. Analysis was performed to predict its mechanism of action. Results A total of 120 compounds in Maxingganshi decoction corresponded to 222 targets. PTGS2, ESR1, PPARG, AR, NOS2, NCOA2 acted on PI3K-Akt signaling pathway, TNF signaling pathway, IL-17 signaling pathway, T cell receptor signaling pathways, etc. The results of molecular docking showed that the affinity of quercetin, kaempferol, glabridin and other core compounds was similar to recommended drugs in treatment of COVID-19. Conclusions The active compounds of Maxingganshi decoction can target multiple pathways to achieve the therapeutic effect of COVID-19.Copyright © 2020 Publication Centre of Anhui Medical University. All rights reserved.

4.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: covidwho-2232748

ABSTRACT

BACKGROUND: Global or untargeted metabolomics is widely used to comprehensively investigate metabolic profiles under various pathophysiological conditions such as inflammations, infections, responses to exposures or interactions with microbial communities. However, biological interpretation of global metabolomics data remains a daunting task. Recent years have seen growing applications of pathway enrichment analysis based on putative annotations of liquid chromatography coupled with mass spectrometry (LC-MS) peaks for functional interpretation of LC-MS-based global metabolomics data. However, due to intricate peak-metabolite and metabolite-pathway relationships, considerable variations are observed among results obtained using different approaches. There is an urgent need to benchmark these approaches to inform the best practices. RESULTS: We have conducted a benchmark study of common peak annotation approaches and pathway enrichment methods in current metabolomics studies. Representative approaches, including three peak annotation methods and four enrichment methods, were selected and benchmarked under different scenarios. Based on the results, we have provided a set of recommendations regarding peak annotation, ranking metrics and feature selection. The overall better performance was obtained for the mummichog approach. We have observed that a ~30% annotation rate is sufficient to achieve high recall (~90% based on mummichog), and using semi-annotated data improves functional interpretation. Based on the current platforms and enrichment methods, we further propose an identifiability index to indicate the possibility of a pathway being reliably identified. Finally, we evaluated all methods using 11 COVID-19 and 8 inflammatory bowel diseases (IBD) global metabolomics datasets.


Subject(s)
COVID-19 , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Metabolomics/methods , Metabolome
5.
BMC Bioinformatics ; 23(1): 344, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1993327

ABSTRACT

BACKGROUND: Pathway enrichment analysis is extensively used in high-throughput experimental studies to gain insight into the functional roles of pre-defined subsets of genes, proteins and metabolites. Methods that leverages information on the topology of the underlying pathways outperform simpler methods that only consider pathway membership, leading to improved performance. Among all the proposed software tools, there's the need to combine high statistical power together with a user-friendly framework, making it difficult to choose the best method for a particular experimental environment. RESULTS: We propose SEMgsa, a topology-based algorithm developed into the framework of structural equation models. SEMgsa combine the SEM p values regarding node-specific group effect estimates in terms of activation or inhibition, after statistically controlling biological relations among genes within pathways. We used SEMgsa to identify biologically relevant results in a Coronavirus disease (COVID-19) RNA-seq dataset (GEO accession: GSE172114) together with a frontotemporal dementia (FTD) DNA methylation dataset (GEO accession: GSE53740) and compared its performance with some existing methods. SEMgsa is highly sensitive to the pathways designed for the specific disease, showing low p values ([Formula: see text]) and ranking in high positions, outperforming existing software tools. Three pathway dysregulation mechanisms were used to generate simulated expression data and evaluate the performance of methods in terms of type I error followed by their statistical power. Simulation results confirm best overall performance of SEMgsa. CONCLUSIONS: SEMgsa is a novel yet powerful method for identifying enrichment with regard to gene expression data. It takes into account topological information and exploits pathway perturbation statistics to reveal biological information. SEMgsa is implemented in the R package SEMgraph, easily available at https://CRAN.R-project.org/package=SEMgraph .


Subject(s)
COVID-19 , Algorithms , Computer Simulation , DNA Methylation , Humans , Software
6.
Natural Product Communications ; 17(7), 2022.
Article in English | EMBASE | ID: covidwho-1956964

ABSTRACT

Objective: The Chinese herbal formula Huo-Xiang-Zheng-Qi (HXZQ) is effective in preventing and treating coronavirus disease 19 (COVID-19) infection;however, its mechanism remains unclear. This study used network pharmacology and molecular docking techniques to investigate the mechanism of action of HXZQ in preventing and treating COVID-19. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to search for the active ingredients and targets of the 10 traditional Chinese medicines (TCMs) of HXZQ prescription (HXZQP). GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledge Base (PharmGKB), Therapeutic Target Database (TTD), and DrugBank databases were used to screen COVID-19-related genes and intersect them with the targets of HXZQP to obtain the drug efficacy targets. Cytoscape 3.8 software was used to construct the drug-active ingredient–target interaction network of HXZQP and perform protein–protein interaction (PPI) network construction and topology analysis. R software was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Finally, AutoDock Vina was utilized for molecular docking of the active ingredients of TCM and drug target proteins. Results: A total of 151 active ingredients and 250 HXZQP targets were identified. Among these, 136 active ingredients and 67 targets of HXZQP were found to be involved in the prevention and treatment of COVID-19. The core proteins identified in the PPI network were MAPK1, MAPK3, MAPK8, MAPK14, STAT3, and PTGS2. Using GO and KEGG pathway enrichment analysis, HXZQP was found to primarily participate in biological processes such as defense response to a virus, cellular response to biotic stimulus, response to lipopolysaccharide, PI3K-Akt signaling pathway, Th17 cell differentiation, HIF-1 signaling pathway, and other signaling pathways closely related to COVID-19. Molecular docking results reflected that the active ingredients of HXZQP have a reliable affinity toward EGFR, MAPK1, MAPK3, MAPK8, and STAT3 proteins. Conclusion: Our study elucidated the main targets and pathways of HXZQP in the prevention and treatment of COVID-19. The study findings provide a basis for further investigation of the pharmacological effects of HXZQP.

7.
Bioinform Biol Insights ; 15: 11779322211067365, 2021.
Article in English | MEDLINE | ID: covidwho-1582628

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections (COVID 19) is a progressive viral infection that has been investigated extensively. However, genetic features and molecular pathogenesis underlying remdesivir treatment for SARS-CoV-2 infection remain unclear. Here, we used bioinformatics to investigate the candidate genes associated in the molecular pathogenesis of remdesivir-treated SARS-CoV-2-infected patients. METHODS: Expression profiling by high-throughput sequencing dataset (GSE149273) was downloaded from the Gene Expression Omnibus, and the differentially expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples and nontreated SARS-CoV-2 infection samples with an adjusted P value of <.05 and a |log fold change| > 1.3 were first identified by limma in R software package. Next, pathway and gene ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub genes were identified by the NetworkAnalyzer plugin and the other bioinformatics approaches including protein-protein interaction network analysis, module analysis, target gene-miRNA regulatory network, and target gene-TF regulatory network. Finally, a receiver-operating characteristic analysis was performed for diagnostic values associated with hub genes. RESULTS: A total of 909 DEGs were identified, including 453 upregulated genes and 457 downregulated genes. As for the pathway and GO enrichment analysis, the upregulated genes were mainly linked with influenza A and defense response, whereas downregulated genes were mainly linked with drug metabolism-cytochrome P450 and reproductive process. In addition, 10 hub genes (VCAM1, IKBKE, STAT1, IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and APBB1) were identified. Receiver-operating characteristic analysis showed that hub genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2, DUSP9, FMO5, and PDE1A) had good diagnostic values. CONCLUSION: This study provided insights into the molecular mechanism of remdesivir-treated SARS-CoV-2 infection that might be useful in further investigations.

8.
Natural Product Communications ; 16(12), 2021.
Article in English | EMBASE | ID: covidwho-1582811

ABSTRACT

Objective: To explore the potential mechanism of Sini jia Renshen Decoction (SJRD) in the treatment of COVID-19 based on network pharmacology and molecular docking. Methods: The active compounds and potential therapeutic targets of SJRD were collected through the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP). Then a string database was used to build a protein–protein interactions (PPI) network between proteins, and use the David database to perform gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on core targets. Then we used Cytoscape software to construct an active ingredients-core target-signaling pathway network, and finally the active ingredients of SJRD were molecularly docked with the core targets to predict the mechanism of SJRD in the treatment of COVID-19. Results: A total of 136 active compounds, 51 core targets and 93 signaling pathways were selected. Molecular docking results revealed that quercetin, 3,22-dihydroxy-11-oxo-delta(12)-oleanene-27-alpha-methoxycarbonyl-29-oic acid, 18α-hydroxyglycyrrhetic acid, gomisin B and ignavine had considerable binding ability with ADRB2, PRKACA, DPP4, PIK3CG and IL6. Conclusions: This study preliminarily explored the mechanism of multiple components,multiple targets,and multiple pathways of SJRD in the treatment of COVID-19 by network pharmacology.

SELECTION OF CITATIONS
SEARCH DETAIL